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Observations and modeling of synchronized bursting in two-dimensional neural networks
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We present long-term~ hours) measurements of the spontaneous activity of two-dimensional cortical cell
neural networks placed on multielectrode arrays. We compare histograms of single neuron interspike intervals
and the network intersynchronized bursting events intervals. In addition, the effect of Ca concentration on the
network activity is being studied. At 1 mM Ca concentration, the network exhibits periodic synchronized
bursting that fades away after about 20 min. We present a feedback-regulated integrate and fire model to
account for the observations. In the model we include two additional features: dynamical threshold and synapse

fatigue.
DOI: 10.1103/PhysRevE.64.011920 PACS nuner87.17~d, 05.70.Ln, 82.40.Bj
I. INTRODUCTION AND MOTIVATION 200 um apart and arranged in a square array. Our recording

area then covereet 1 mn? out of the~3 cn? total area of
The neural network is the organizational link that allows athe 2D neural network.
collection of individual neurons that can generate action po- We observed two distinct patterns of activityt) periods
tentials to become a functioning brain. In principle, oneof sporadic firing of individual neurons ari@) synchronized
would like to study three-dimension&BD) in vivo neural  bursting events in which all the neurons fire several times
networks. However, it is difficult to visualize them and mea-within a short-time interval 200 msec)[9]. Similar pat-
sure the electrical activity. Hence, much effort has recentlyterns of activity have been observed in manyvivo neu-
been devoted to the study of two-dimensiof@D) in vitro ronal tissue$5-7].
neural networks, in which neural activity can be measured by We studied the distribution of the intersynchronized
means of a 2D array of microelectrodes, and network morbursting event intervaldSBI) and showed that it is similar
phology is visualized by light microscopy. In addition, con- to that of single neuron interspike intervdl$l). It is inter-
trol of the chemical environment of the network, which is esting to note that a similar property has also been found in
difficult in vivo, is greatly simplified forin vitro networks, the beating of heart cell® vitro [13]. This might indicate
and the effect of different drugs can be studiédl Further-  that it is a general property of biological excitatory systems.
more, the ability to characterize 2D networks in great detailNext, we studied the internal structure of the synchronized
affords quantitative comparisons between experimental rebursting events and showed the existence of early and late
sults and network models. phases of neural firing. At the early phase the neurons burst
Much effort has been devoted to show that the morphorapidly during a short-time interval5 msec), followed by
logical and electrophysiological developments in 2D neurathe late phase, which is characterized by a long decay
networks mimic neuronal developmdntvivo [2,3]. For ex-  (~200 msec) of neuronal activity.
ample, in vitro neurite outgrowth and branching is most Experimental observations were then compared with the
prominent during the first two weeks, and synapse formationintegrate and fire mod¢lL4—14. While this model can pro-
starts at about four days, peaks at three weeks and then s@uce synchronized bursting events, the ISBI distribution of
bilizes at a lower level between four to six weeks. In addi-this model is finite in short-time intervals unlike the experi-
tion, quantitative analysis of neuronal spike trains recordednental one. Hence, we included in our model two additional
with intracellular glass electrodes has revealed specific deexperimentally known featuregl) an activity-dependent
velopment trends in neuronal firing pattefi2s4] which are  threshold for the action potential an(®) an activity-
similar to those observeid vivo [5-7]. dependent synaptic strength. Inclusion of these features into
Here we present studies of such 2D neural networks. Thehe integrate and fire model produces a model that ad-
networks are composed of abouf?Igells, both neurons and equately describes the experimental observations.
glia. The cells are grown on arrays of 60 microelectrodes. The extracellular Ca is known to affect the action poten-
The neurons are randomly attached to the surface. Not all 6fal firing threshold (see[15]) and synapse probability of
electrodes have neurons attached to them, while some elegeurotransmitter releagd4,17. Hence, we studied the ef-
trodes can have more than one neuron attached. The capafiict of C&" concentration on the synchronized bursting
tance coupling between the neurons’ membrane and the elegvents in order to reveal the Ca effect on the network behav-
trode allows recording of the spontaneous electrical activityor. Using 1 mM C&", we observed that neuronal activity is
[8,3,2,9-12 The electrodes are 3@m in diameter and almost periodic and the network has short sec) ISBI.
At lower (0.5 Mm) and higher(2 mM) Ca levels we ob-
served aperiodic synchronized bursting. Using our version of
*Corresponding author. FAX: 972-3-6422979. Email addressthe integrate and fire model, we show that by adjusting the
eshel@venus.tau.ac.il maximum synaptic efficacies we can reproduce these ob-
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served phenomena. We also found that aft@0 min in the
presence of 1 mM Cd, the periodic activity of the network
fades away. Afterwards, the network exhibits aperiodic ac-
tivity without any significant change for-20 h. We con-
clude that the network demonstrates an interesting adaptive
capability to the imposed external conditions. At present we
do not know why the periodic activity fades away.

In Sec. Il we describe the experimental methods we used
to culture and measure the network activity. In Sec. Il we
describe the experimental observations. In Sec. IV we

present the new regulated feedback model and discuss the @
biophysical basis of the observed activity. Finally, we dis- 0
cuss the theoretical and experimental results in Sec. V. 30
20r
Il. EXPERIMENTAL METHODS 10
A. Cell culture > o
Dissociated cortical cultures were prepared and main- 1ol
tained as follows: the entire cortices from one-day-old
Charles River rats were finely chopped. The cortical tissue o0t
was digested with 0.065% trypsi(Biological Industries,
Beit Ha-Emek, catalog 03-046-1Lm phosphate buffered sa- -30r
line (Biological Industries, catalog No. 02-023)ldor 15 _40

min, followed by mechanical dissociation by trituration. U 5 10 15 20
Cells were resuspended in a modified essential medium with ®  time(msec)

Eagle’s saltgBiological Industries, catalog No. 01-025)1a
containing 5% horse serurgBiological Industries, catalog

No. 04-001-1a 1 mg/ml gentamycin, and 0.02 mM glucose,

and plated on the multielectrode array which was previousl

coated with poly-D-lysindSigma, catalog No. p-7889The spike measured by an extracellular electrode. Typically, the neural

cu_Itl_Jre was maintained at 37 °C with 5% Cand 95% _hu- spike is 2—4 msec in duration as measured from extracellular elec-
midity for 10 days before measurements began. In this papq}%desl

we describe results obtained from 18 cell cultures that were

FIG. 1. (a) Neurons on top of an electrode array after 10 days
vitro: the electrodes are 3@m in diameter(error bar=10 um).
he typical cells are~10 um in diameter. The thin filaments be-
ween the cells are the axon and dendrii@.An example of a

obtained from different animals. digitized and stored in a personal computer equipped with a
16-channel, 12-bit data acquisition boaidicrostar DAP,
B. Measurement conditions 770 K samples/s¢and a multiplexer that enables simulta-

peous 60 electrode recording at a rate of 12 K samples/sec
per electrode. The data was acquired using Alpha-Map data
acquisition softwaréAlpha Omega Engineering, Israel

Data from each electrode array was recorded continu-

. ; : ously. All the electrodes that detected spikes were selected
No. p-0383; pH and osmolarity were adjusted to 7.3 and o :
325 mosm, respectively. To the basic extracellular Solutionfor data acquisition and the recorded data was kept on a disk.

CaCl, was added as stated in the text. Data was recorded gl t_hreshold detector was used to mark voItage. amplltudgs
which exceeded the noise by 3.5-fold. In a typical experi-

° - 1 0, i1d-
i; cﬁérlrrl]kfgretlc?g?et\gnmt :jggg?;%gf we used a 100% humldment there are 10-20 electrodes that detect spikes and
' ~20% that record more then one neuron. Analysis and sort-

ing of the extracellular recording were made by our method

based on wavelet packet decomposition as describEBin

All measurements of the spontaneous activity were mad
in an extracellular solution containing 160 mM NaCl, 2.5
mM KCI, 10 mM hepes(Sigma, catalog No. h-337510
mM glucose, and 1 ml/500 ml phenol ré8igma, catalog

C. Data acquisition

Extracellular recordings were made utilizing a multi-

electrode arrafMEA) consisting of 60 substrate-integrated IIl. EXPERIMENTAL RESULTS
thin-film microelectrodeSMEA-chip, Multi Channel Sys-
temsg [18], of 10 wm width and 200 um between the elec-
trodes. The electrode impedance is 100-500& 1 KHz, Characterization of the 2D neural networks experimental
and its bandwidth of 10 Hz to 3 kHz permits the recording ofsystem started by measuring the 1SI between successive ac-
individual spikes. Low-noise amplifiers are integrated on ation potentials recorded extracellularly from individual neu-
single board(B-MEA-1060, amplifier, gainxX 2000 with a  rons situated on the microelectrodes arréyigy. 1). Histo-
band-pass filter 200 Hz-5 kHz, Multi Channel Systéms grams of the ISI from three different neurons are shown in
The signals collected from the microelectrodes have beeRig. 2. The differences in ISI histograms may arise from the

A. Synchronized bursting events
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(b) ISI(msec)
600 . : . : FIG. 3. Spontaneous activity of normal cell culture in a growth
medium 30 sec after the G@tmosphere was removed, i.e., the ph
was 7.3.(a) Raster plot with 0.1 sec time bin&) Zoom into the
synchronized bursting evenfsme bin 1 msegat the middle of the
raster plot in(a) (22 seg.

lution due to the sharp voltage waveform of the extracellular
recording[see the lowest voltage point at Figbl]. In all of
the examples shown, the neurons have an absolute refractory
<2 msec. The refractory period is followed by a high prob-
ability to fire at intervals of about-8—-10 msec. The histo-
gram has a long tail decay ef 70 msec as described before
in many systemsgsee[14] and references thergin
‘ . ‘ Individual neurons also exhibit two distinct spontaneous
0 10 20 30 40 50 firing dynamics:(1) Sporadic neuron firing where the neu-
(©) ISI(msec) rons fire randomly one at a timé&2) Synchronized bursting
events in which all the neurons spike several times within a
FIG. 2. Three typical examples of the neurons’ ISI. There is anshort-time interval 200 msec). The detection of these
absolute refractory period followed by a long decay of neuronaleyents is done by moving a threshold detector over the raster
activity. The distribution of the histogram is different due to the plot with 100 msec time bins. Then, we detect the time bins
intrinsic properties of the neurons or the differences in the wiring ofi, \which 80% of the neurons showed at least one spike dur-
neurons to the networtall neurons are from a single preparajion ing that bin. In Fig. 8) we show a raster plot of typical
activity of a normally developed network after 10 days in
intrinsic properties of the neurons or the differences in theculture. The synchronized bursting events are the predomi-
way the neurons are coupled to the network. Although thenant feature of cortical neural networks in a culture occuring
action potentials are 2—4 msec in duration, the exact timingn almost all network conditions as well as in severalivo
of the action potential can be detected-#0.1 msec reso- systemg5-7].
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o
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During the synchronized bursting event, each neuron has - il ‘ ' I
its own firing pattern. Different neurons fire from 1-2 spikes
to ~25 spikes during each event. In FigtbB we show a | !
zoom in time of the synchronized bursting events. |
The neurons start to burst within a very-short-time interval \

(~5 msec) and there is a long-(L50 msec) decay of the
network activity. I |

After a synchronized event is triggered, the system enters

an absolute refractory period during which there is no syn- 415} |

&1

of Neurons
O

chronized bursting. Note that both the single neuron and the Z
entire network exhibit absolute refractoriness. The typical

ISBI is of the order of 5 sec as we show in Fig. 4. Further- 20+
more, the histogram shows long tail decay althoug®5%

I\)

of the probability mass is below 50 sec. IO 36 4'0 50
(a) t|me(sec)
B. The effect of Ca concentration ‘ I

Keeping in mind the motivation presented in the Introduc- 2r ’ h fl Ml ‘ 3 ” ‘Il , /l " IW | [J AI‘
tion, we performed measurements of the network spontane—w all ! ‘ |
ous dynamics at different levels of €aconcentration. The c RN | ! | L | | ' || \ N ||
cell cultures were prepared by growing neurons for 10 days. g 6f | ' “ *N I‘ i M h #
Then the growth medium was replaced by extracellular so- @ ‘ ’ F
lution containing different levels of Cagl The electrical < gt ! I ﬂ |
measurements were performed about 60 sec after the extra © |'| I || ” L 1 \ |h ey .' W L
cellular solution was added. oo

As expected, the networks show strong dependence on theZ || |

N

H | ‘
Ca concentrations. At both 0.5 and 2 mM%Caconcentra- ‘| I ‘ | | ‘ | | | ||‘ ‘ ‘ |
tions the activity pattern is aperiodic. The neurons fire ran- 14}/ |
. ) . (00N | | IRERRE I |
domly, and occasionally there are synchronized bursting , ‘
events(Figs. 3 and & However, intermediate levels of &€a ] 10 20 30 40 50
concentrations around 1 mM have a dramatic effect: ®  time(sec)
the network’s activity turns into almost periodic and rapid ' ‘ ’ ‘ | ‘ ‘ J

(~2 sec) synchronized burstingee Fig. 5, in agreement 2r
with the observations of Maedat al. [9].

0N 4t
c |I | |
C. Long-term behavior o 6 ‘ | | ~ |‘
= Of |
The novelty of our system is the ability to perform long- @
- . Z 4l |
term recordinggdozens of houps In Fig. 6 we show the ~ 8

raster plot of the network dynamics at 1 min and 60 min after ©
the 1 mM C&" was added. After 1 min, the network shows ©10f |
the almost periodic and rapid<(2 sec) synchronized burst- ‘
ing as described before. However, after 60 min the network 121 |
activity becomes aperiodic synchronized bursting. To ensure al |
that the observed change in the activity was not due to the . ‘ ‘ ‘
deterioration of the network, we continued recording for 15 h 10 20 30 40 50

after this data was collected and did not notice any signifi- () time(sec)

cant change in the activity.

Next we studied the transition between periodic and ape- FIG. 4. The effect of Ca concentration on network activity: a
riodic network activities. It is natural to use time-dependentraster plot with a 0.1 sec birta) 0.5 mM Ca concentratior(b) 1
Fourier transform methods to analyze the long-term network"™ Ca concentration(c) 2 mM Ca concentration. The network
activity. Our method involves calculating the population to- activity is aperiodic under 0.5 mM Ca and 2 mM Ca and periodic at
tal activity at each time bin, then dividing this time sequencel MM Ca(data are from a single preparajon

into windows. Using the Welch method of power spectrumine power spectral densitfPSD of the network activity.

estimation[20], we calculate the power spectrum of eachThe PSD shows at the beginning two high peaks that corre-
window. The result is a time sequence of power spectrumdpond to the first and second harmonics of the periodic net-
estimations. In Fig. 7 we show the development in time ofwork activity. After about 15 min the PSD becomes flat, and
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0 |SB|(ZSOGC) FIG. 7. Power spectral density vs time of network activity under
1 mM Ca concentration. The two high peaks in the PSD correspond

FIG. 5. ISBI calculated from~15 h recording(0.5 mM Ca to the first and the second harmonics of the activity period. After

concentration ~15 min the high periodic activity fades away.
the periodic activity fades away. An interesting feature of the IV. FEEDBACK REGULATED INTEGRATE
observed transition is that there is no change in the frequency AND FIRE MODEL

of the periodic activity during this transition as is seen from

the PSD(Fig. 7). A. Beyond the integrate and fire model

As our starting point in modeling we used the widely

‘ ' \ ’ R ‘ [ 7] ‘ studied integrate and fire model. This model captures two
2 | 1 key elements of neuronal activity: passive integration of syn-
aptic inputs in the subthreshold domain and generation of an

] action potential once the threshold has been excedded

} ‘ ‘ ‘ ‘ review of the integrate and fire models §é&4,21,16,22 for
a discussion in synchronization of nonlinear oscillatohs
the model, each neuron is represented by a leaky capacitor
that integrates inputs from synaptic connections and external
stimuli. The time dependence of the capacitor voltage is de-
scribed by the following equation:

dv,
dt

I

[«)]

—
o

No. of Neurons
(o]

141

-
n

V' P .
— RS Wt e

whereV; is the potential of théth neuron.C andR are the
capacitance and resistance of the neukjp.are the synap-

tic efficacy between thgth andith neuront}, is thekth spike

4r ] of the jth neuron.l ., is the external current that feeds into

‘ ‘ | the neuron if it is externally stimulated. Since we are inter-
‘ ested in spontaneous activity we $gf;=0.

The synaptic coupling of the network is taken to be all to
all, since our recoding array corresponds to one activity unit.
107 | \ \ o ] The synaptic efficacies are randomly selected from a uniform
distribution[ 0,W,,,,,] and eachth neuron is either excitatory

No. of Neurons
o

12 ‘ ’ ’ (i.e., W;;>0 for all j) or inhibitory (i.e., W;;<0 for all j).
147 We choose 10% of the cells to be inhibitory.
. ‘ ‘ ‘ Each neuron integrates the synaptic input, and once the
.10 20 30 40 50 potentialV; reaches a threshold levé},,, an action potential
(0)  time(sec) is triggered and the charge that has accumulated on the ca-

FIG. 6. Network dynamics under 1 mM &aconcentration(a) pacitor is shunted to zero. Following the action potential, the
1 min after the 1 mM Ca was adde) 60 min after the 1 mM Ca Neuron enters a refractory period fgg time units. During
was added. At the early time the network shows the almost periodigh€ refractory period the capacitance is zero and the potential
and rapid (-2 sec) synchronized bursting. However, after 60 minis Vi=0. After 7,.; the neuron becomes active again.
the network activity become aperiodic synchronized bursting. Typi- The above picture is problematic when spontaneous activ-
cally there were 1—6 spikes per neuron for each synchronized everity is considered. If we start with all the cells’ potential be-
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|:I"| | |||I||||| |’ ll II ‘ I|II

low threshold level, we have no activity. In reality, there are
internal mechanisms of spike generation below threshold | | | ol ||
level. Two biophysiological processes contribute to this | |
mechanismi1) the random opening of ionic channels can @ 5} |l
induce an “avalanche” of channel openings and finally a 8 | |
spontaneous spikesee[14], Chap. 8 for discussigrand (2) S
the random release of neurotransmitter vesicles in the syn-ﬂ-)m_I | L I |
apse can induce random excitatory postsynaptic potential&
(EPSP’$ which are integrated from several sources to gen- © I |’|
erate spontaneous spikese[14], Chap. 4 for discussion o I | ||
Here we represent these mechanisms in the model by asZ 15} ’ I
signing finite probability of firing below threshold level. The N |
firing probability per unit timer is chosen to depend expo-
nentially on the voltage

|| | ‘ |
‘ ||| || |||"| lM | |‘ '0
| |I Iw|l || “'II | I ||| |

||./||‘|| I’l| "I.l I\‘I I|||| ||. || I\ || |

o il 1L

r=0e Vi~V Ter, 2 @  time(sec)

where(Q is the attempt frequency arnifl¢; is the effective
energy barrier.

Simulations of the above specified integrate and fire
model produce synchronized activity as is shown in Fig.
8(a), i.e, aperiodic synchronized activity. However, the ISBI
histogram[Fig. 8b)] differs from the observed one. While
the simulated distribution of ISBI is finite at zero, the mea-
sured one has a cutofébsolute refractorinessThis model
has to be refined. There are two additional known features _-
that are not included in the model at this sta@®:the dy-
namic threshold an{®) activity-dependent synaptic connec-
tions. Next we test the effect of inclusion on each of these
features.

No. of Events
> >

[$)]

0

: 0 5 10 15 20 25 30
B. The effect of dynamical threshold
y o  ISBl(sec)

First we test the effect of inclusion of the dynamical
threshold on the model. This mechanism could be thought of FIG. 8. Simulation of the integrate and fire modg). A raster
as representing the overall effect on the cell threshold inplot of 20 out of 100 cells in the simulation. The neurons fire
duced by the activation and inactivation of the ionic channelgandomly and from time to time there is a synchronized bursting.
(see[13,15,14 for discussions on similar mechanimn (b) histogram of ISBI for the basic integrate and fire modeC
our model the cell's threshold depends on the number of 10 MseC,Wia,=0.36.
available closed channels. Once a spike is triggered, the ) ) ) )
closed channels open and generate the spike. During tHuhere 0<c_z<1 is the fractlon of channe_ls_ that tu_rn mactlve._
spike, a fraction of the open channels turn inactive while théchannels in the inactive state have a finite closing probabil-
rest of the open channels return to the closed state. The chalfy Per unit time. Thus,
nels in the inactive state are not opened by the spike and

therefore increase the threshold. Specifically, Mgt be the %: n 6)
cell's threshold. Then dt 7y
1 and
Vin= oy’ ()
dni n;
wheren, is the number of the closed channels andis a at T (7)
constant. Following a spike, the number of closed channels is
reduced as follows: where 7y, is the refractory time constant.
The effect of inclusion of the dynamic threshold is shown
Ne—(1l—ajn. (4 inFig. 9a). Clearly, the resulting dynamics is in good agree-
ment with the observed experimental data. The neurons fire
Thus the number of inactive channels becomes randomly, and occasionally there are synchronized firing
events. Furthermore, the ISBI histogram also agrees with the
n,—n;+an, (5)  experimental one as is shown in Figh®2
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(b) ISBI(sec)

15

.10
®  time(sec)

FIG. 9. (a) A raster plot of simulation of network activity when
the dynamic threshold is included in the model. The network activ- |
ity is more regular then before and thRC=10 msec, 7, \ || ‘ | /
=100 msec,a=0.4, W,,,,=0.1).(b) A histogram of ISBI for the ’ ‘ | |
model with the dynamic threshold.

%]

In order to simulate the effect of Ca concentration we
vary Wp,.«. In Figs. 1@a), 10(b), and 1@c) we show raster
plots of network activity forW,,,,=0.18, 0.23, and 0.17,
respectively. At theN,,,,=0.18 and 0.17 the network activ-
ity is aperiodic synchronized bursting as with 0.5 and 2 mM | ~ B
Ca concentrations. When we increasg,,, to 0.23, the ac- | || |
tivity becomes fast periodic synchronized bursting as in the | \’ / I | |
case of 1 mM Ca concentrations. Thus, the model can cap- 20t [

ture the different activity patterns observed experimentally . 10 20 30 40 50
(see Fig. 4. ©  time(sec)

No. of Neurons
o

-
[9)]

FIG. 10. The fit of the model with a dynamical threshold to the
C. The effect of synapses dynamics different Ca concentration experiment. In each simulation we ad-
éusted theW,, .« to fit the dynamical state as followga) 0.5 mM

In this section we test the effect of dynamical synapse
y ynap =0.18.(b) 1 mM Ca,W,,5,=0.23.(c) 2 mM Ca, Wy, ayx

(see[23] and references therein for a similar mechanism thaEa' Winax
leads to bursting There is a known fatigue effect on the —
synapse strength. During activity the synapse releases the
neurotransmitter and reuptakes it during the postspike pe- Wi —(1-B)Wjj, (8

riod. Hence, the synaptic strength is reduced until the amount

of neurotransmitter in the synapse is fully recovered. In the

model we assign to each synapse a single variable which ishere 0<B<1 is a fatigue factor. Between events of neu-
the synaptic efficacyV;; . Each time the synapse passes arotransmitter release the synapse efficacy increases continu-
signal, its efficacy decreases as follows: ously
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FIG. 12. Histogram of ISBI for the model with dynamic syn-
apses Wpa=0.275).
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w

TsynapselS the efficacy-recovering time constant. The effect
of the dynamical synaptic strength is shown in Fig. 11. We
find a good agreement with the experimental observations.
To capture the effect of calcium concentration, we again
vary the level ofW,,,x. The results are as shown in Fig. 11.
Again, by adjusting the single variabW,, ., we get the nor-
mal activity (as in the 0.5 mM C& and 2 mM C&" experi-
mentg and the rapid synchronized burstitags in the 1 mM
Ca™* concentration experimentgurthermore, the ISBI his-
togram is with a good agreement with the experimental one

(Fig. 12.

\‘ll ‘I \I‘/ || ‘I

I
.
|

i1

/II 1/l

|
20 \MH lIlI\Il.\ | ||| ! \ ‘ /|||
10 20 30 40

(b) time(sec)
\ T M1 ’ ’ M 1 V. DISCUSSION AND CONCLUSIONS
| ] I

it ‘

No. of Neurons
(@]

jre
[9)]

L

| ||| ||(
‘ |

\M 0o | |\ I‘ ||| ‘H | ||‘ ‘HI We have used the multielectrode array technique to study
5§ B n ’ ‘ I I the spontaneous actiyity of cultured 2D neural network; The
H| N | ‘ (1 | \ | single neuron dynamics shows that each neuron has its own
I\l || [l I\ ||' ] dominant features are the synchronized bursting events. In
| ﬂ H I /' I H‘ H| l\ | | ! these events, each of the neurons generates at least one spike
‘I | ‘\i I\ | | \ | I m H‘ | | \ | and usually several spikes during a time window of
\ ‘H | \I ’ ~100 msec. The basic features of the network ISBI histo-
15’| \{ “ | Il ||"\|\‘ | \ ‘ | B gram are similar to those of the single neurons but the time
[ I 1 T A A [ 11
1 “II
\

| ' | scale is different. Once a synchronized event is triggered, the
| ‘” | | ‘ | ‘ system enters an absolute refractory period during which
20t [T | AT [ I 5 there is no synchronized bursting.

d
‘I
10 20 30 40 50 In our measurements, we could not detect a particular
(© time(sec) spatial organization in the activity during the synchronized
) ) ) bursting events. Note that observation of heart cell tissue
FIG. 11. The fit of the model with dynamical synapses to theculture showed particular spatial organizatif@4]. This
different Ca concentration experiment. In each simulation we adbrings to mind that neuron culture might also exhibit such
justed theWmay to fit the dynamical state as follow) 0.5 mM activity. Yet, in our experimental system, the maximum de-
S%’ \zl\gmaxfo'ﬂs’(b) 1 mM Ca,Wina=0.6; (C) 2 mM Ca, Wrnax lay of the axonal transport of an action potential from one
o neuron to another is less then 1 msec as compared to 10
msec of the typical time scale of synapse transport. There-
©) fore, the synaptic delay erases the spatial delay, and there
should be no effect of the spatial organization of activity. To
o unravel the spatial organization one should use electrode ar-
whereW;; is the steady-state synaptic effica@yhich is de-  rays with larger spacing.
termined randomly as described beforéThe constant The experimental observations enable us to develop a

characteristic ISI histogram. On the network level, the most

No. of Neurons
o

dw,

dt Tsynapse

j =

011920-8
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feedback-regulated integrate and fire model. In this modebf network adaptation should be verified in experiments of
each neuron is represented by a capacitor that integrates thery-long-term (days) measurements of spontaneous ac-
synaptic inputs and generates an action potential whetivity. The transition between periodic to aperiodic activity
threshold is exceeded. The following two additional featuresreeds an additional explanation that we did not include in
are included: (1) dynamic threshold and(2) activity-  our model at this stage. We hope that additional experimen-
dependent synaptic connections. Each of these features cg{) studies will reveal the relevant information.
retain most of the observed network activity, from aperiodic
activity in the presence of a growth medium to periodic ac-
tivity in the presence of 1 mM Ca concentration. ACKNOWLEDGMENTS
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