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Observations and modeling of synchronized bursting in two-dimensional neural networks
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We present long-term (;hours) measurements of the spontaneous activity of two-dimensional cortical cell
neural networks placed on multielectrode arrays. We compare histograms of single neuron interspike intervals
and the network intersynchronized bursting events intervals. In addition, the effect of Ca concentration on the
network activity is being studied. At 1 mM Ca concentration, the network exhibits periodic synchronized
bursting that fades away after about 20 min. We present a feedback-regulated integrate and fire model to
account for the observations. In the model we include two additional features: dynamical threshold and synapse
fatigue.
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I. INTRODUCTION AND MOTIVATION

The neural network is the organizational link that allows
collection of individual neurons that can generate action
tentials to become a functioning brain. In principle, o
would like to study three-dimensional~3D! in vivo neural
networks. However, it is difficult to visualize them and me
sure the electrical activity. Hence, much effort has recen
been devoted to the study of two-dimensional~2D! in vitro
neural networks, in which neural activity can be measured
means of a 2D array of microelectrodes, and network m
phology is visualized by light microscopy. In addition, co
trol of the chemical environment of the network, which
difficult in vivo, is greatly simplified forin vitro networks,
and the effect of different drugs can be studied@1#. Further-
more, the ability to characterize 2D networks in great de
affords quantitative comparisons between experimental
sults and network models.

Much effort has been devoted to show that the morp
logical and electrophysiological developments in 2D neu
networks mimic neuronal developmentin vivo @2,3#. For ex-
ample, in vitro neurite outgrowth and branching is mo
prominent during the first two weeks, and synapse forma
starts at about four days, peaks at three weeks and then
bilizes at a lower level between four to six weeks. In ad
tion, quantitative analysis of neuronal spike trains record
with intracellular glass electrodes has revealed specific
velopment trends in neuronal firing patterns@2,4# which are
similar to those observedin vivo @5–7#.

Here we present studies of such 2D neural networks.
networks are composed of about 106 cells, both neurons and
glia. The cells are grown on arrays of 60 microelectrod
The neurons are randomly attached to the surface. Not a
electrodes have neurons attached to them, while some
trodes can have more than one neuron attached. The ca
tance coupling between the neurons’ membrane and the
trode allows recording of the spontaneous electrical acti
@8,3,2,9–12#. The electrodes are 30mm in diameter and
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200 mm apart and arranged in a square array. Our record
area then covered;1 mm2 out of the;3 cm2 total area of
the 2D neural network.

We observed two distinct patterns of activity:~1! periods
of sporadic firing of individual neurons and~2! synchronized
bursting events in which all the neurons fire several tim
within a short-time interval (;200 msec)@9#. Similar pat-
terns of activity have been observed in manyin vivo neu-
ronal tissues@5–7#.

We studied the distribution of the intersynchroniz
bursting event intervals~ISBI! and showed that it is simila
to that of single neuron interspike intervals~ISI!. It is inter-
esting to note that a similar property has also been foun
the beating of heart cellsin vitro @13#. This might indicate
that it is a general property of biological excitatory system
Next, we studied the internal structure of the synchroniz
bursting events and showed the existence of early and
phases of neural firing. At the early phase the neurons b
rapidly during a short-time interval (;5 msec), followed by
the late phase, which is characterized by a long de
(;200 msec) of neuronal activity.

Experimental observations were then compared with
integrate and fire model@14–16#. While this model can pro-
duce synchronized bursting events, the ISBI distribution
this model is finite in short-time intervals unlike the expe
mental one. Hence, we included in our model two additio
experimentally known features:~1! an activity-dependen
threshold for the action potential and~2! an activity-
dependent synaptic strength. Inclusion of these features
the integrate and fire model produces a model that
equately describes the experimental observations.

The extracellular Ca is known to affect the action pote
tial firing threshold ~see @15#! and synapse probability o
neurotransmitter release@14,17#. Hence, we studied the ef
fect of Ca21 concentration on the synchronized bursti
events in order to reveal the Ca effect on the network beh
ior. Using 1 mM Ca21, we observed that neuronal activity
almost periodic and the network has short (;1 sec) ISBI.
At lower ~0.5 Mm! and higher~2 mM! Ca levels we ob-
served aperiodic synchronized bursting. Using our version
the integrate and fire model, we show that by adjusting
maximum synaptic efficacies we can reproduce these
:

©2001 The American Physical Society20-1
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served phenomena. We also found that after;20 min in the
presence of 1 mM Ca21, the periodic activity of the network
fades away. Afterwards, the network exhibits aperiodic
tivity without any significant change for;20 h. We con-
clude that the network demonstrates an interesting adap
capability to the imposed external conditions. At present
do not know why the periodic activity fades away.

In Sec. II we describe the experimental methods we u
to culture and measure the network activity. In Sec. III
describe the experimental observations. In Sec. IV
present the new regulated feedback model and discuss
biophysical basis of the observed activity. Finally, we d
cuss the theoretical and experimental results in Sec. V.

II. EXPERIMENTAL METHODS

A. Cell culture

Dissociated cortical cultures were prepared and ma
tained as follows: the entire cortices from one-day-o
Charles River rats were finely chopped. The cortical tis
was digested with 0.065% trypsin~Biological Industries,
Beit Ha-Emek, catalog 03-046-1b! in phosphate buffered sa
line ~Biological Industries, catalog No. 02-023-1a!, for 15
min, followed by mechanical dissociation by trituratio
Cells were resuspended in a modified essential medium
Eagle’s salts~Biological Industries, catalog No. 01-025-1!
containing 5% horse serum~Biological Industries, catalog
No. 04-001-1a!, 1 mg/ml gentamycin, and 0.02 mM glucos
and plated on the multielectrode array which was previou
coated with poly-D-lysine~Sigma, catalog No. p-7889!. The
culture was maintained at 37 °C with 5% Co2 and 95% hu-
midity for 10 days before measurements began. In this pa
we describe results obtained from 18 cell cultures that w
obtained from different animals.

B. Measurement conditions

All measurements of the spontaneous activity were m
in an extracellular solution containing 160 mM NaCl, 2
mM KCl, 10 mM hepes~Sigma, catalog No. h-3375!, 10
mM glucose, and 1 ml/500 ml phenol red~Sigma, catalog
No. p-0383!; pH and osmolarity were adjusted to 7.3 a
325 mosm, respectively. To the basic extracellular soluti
CaCl2 was added as stated in the text. Data was recorde
37 °C. In the long-term experiments we used a 100% hum
ity chamber to prevent evaporation.

C. Data acquisition

Extracellular recordings were made utilizing a mul
electrode array~MEA! consisting of 60 substrate-integrate
thin-film microelectrodes~MEA-chip, Multi Channel Sys-
tems! @18#, of 10 mm width and 200mm between the elec
trodes. The electrode impedance is 100–500 kV at 1 KHz,
and its bandwidth of 10 Hz to 3 kHz permits the recording
individual spikes. Low-noise amplifiers are integrated on
single board~B-MEA-1060, amplifier, gain32000 with a
band-pass filter 200 Hz–5 kHz, Multi Channel System!.
The signals collected from the microelectrodes have b
01192
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digitized and stored in a personal computer equipped wit
16-channel, 12-bit data acquisition board~Microstar DAP,
770 K samples/sec! and a multiplexer that enables simult
neous 60 electrode recording at a rate of 12 K samples
per electrode. The data was acquired using Alpha-Map d
acquisition software~Alpha Omega Engineering, Israel!.

Data from each electrode array was recorded conti
ously. All the electrodes that detected spikes were sele
for data acquisition and the recorded data was kept on a d
A threshold detector was used to mark voltage amplitu
which exceeded the noise by 3.5-fold. In a typical expe
ment there are 10–20 electrodes that detect spikes
;20% that record more then one neuron. Analysis and s
ing of the extracellular recording were made by our meth
based on wavelet packet decomposition as described in@19#.

III. EXPERIMENTAL RESULTS

A. Synchronized bursting events

Characterization of the 2D neural networks experimen
system started by measuring the ISI between successive
tion potentials recorded extracellularly from individual ne
rons situated on the microelectrodes arrays~Fig. 1!. Histo-
grams of the ISI from three different neurons are shown
Fig. 2. The differences in ISI histograms may arise from

FIG. 1. ~a! Neurons on top of an electrode array after 10 daysin
vitro: the electrodes are 30mm in diameter~error bar510 mm).
The typical cells are;10 mm in diameter. The thin filaments be
tween the cells are the axon and dendrites.~b! An example of a
spike measured by an extracellular electrode. Typically, the ne
spike is 2–4 msec in duration as measured from extracellular e
trodes.
0-2
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OBSERVATIONS AND MODELING OF SYNCHRONIZED . . . PHYSICAL REVIEW E64 011920
intrinsic properties of the neurons or the differences in
way the neurons are coupled to the network. Although
action potentials are 2–4 msec in duration, the exact tim
of the action potential can be detected in;0.1 msec reso-

FIG. 2. Three typical examples of the neurons’ ISI. There is
absolute refractory period followed by a long decay of neuro
activity. The distribution of the histogram is different due to t
intrinsic properties of the neurons or the differences in the wiring
neurons to the network~all neurons are from a single preparation!.
01192
e
e
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lution due to the sharp voltage waveform of the extracellu
recording@see the lowest voltage point at Fig. 1~b!#. In all of
the examples shown, the neurons have an absolute refra
<2 msec. The refractory period is followed by a high pro
ability to fire at intervals of about;8 –10 msec. The histo
gram has a long tail decay of;70 msec as described befo
in many systems~see@14# and references therein!.

Individual neurons also exhibit two distinct spontaneo
firing dynamics:~1! Sporadic neuron firing where the neu
rons fire randomly one at a time.~2! Synchronized bursting
events in which all the neurons spike several times withi
short-time interval (;200 msec). The detection of thes
events is done by moving a threshold detector over the ra
plot with 100 msec time bins. Then, we detect the time b
in which 80% of the neurons showed at least one spike d
ing that bin. In Fig. 3~a! we show a raster plot of typica
activity of a normally developed network after 10 days
culture. The synchronized bursting events are the predo
nant feature of cortical neural networks in a culture occur
in almost all network conditions as well as in severalin vivo
systems@5–7#.

n
l

f

FIG. 3. Spontaneous activity of normal cell culture in a grow
medium 30 sec after the CO2 atmosphere was removed, i.e., the
was 7.3.~a! Raster plot with 0.1 sec time bins.~b! Zoom into the
synchronized bursting events~time bin 1 msec! at the middle of the
raster plot in~a! ~22 sec!.
0-3
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SEGEV, SHAPIRA, BENVENISTE, AND BEN-JACOB PHYSICAL REVIEW E64 011920
During the synchronized bursting event, each neuron
its own firing pattern. Different neurons fire from 1–2 spik
to ;25 spikes during each event. In Fig. 3~b! we show a
zoom in time of the synchronized bursting even
The neurons start to burst within a very-short-time inter
(;5 msec) and there is a long (;150 msec) decay of the
network activity.

After a synchronized event is triggered, the system en
an absolute refractory period during which there is no s
chronized bursting. Note that both the single neuron and
entire network exhibit absolute refractoriness. The typi
ISBI is of the order of 5 sec as we show in Fig. 4. Furth
more, the histogram shows long tail decay although;95%
of the probability mass is below 50 sec.

B. The effect of Ca concentration

Keeping in mind the motivation presented in the Introdu
tion, we performed measurements of the network sponta
ous dynamics at different levels of Ca21 concentration. The
cell cultures were prepared by growing neurons for 10 da
Then the growth medium was replaced by extracellular
lution containing different levels of CaCl2. The electrical
measurements were performed about 60 sec after the e
cellular solution was added.

As expected, the networks show strong dependence on
Ca concentrations. At both 0.5 and 2 mM Ca21 concentra-
tions the activity pattern is aperiodic. The neurons fire r
domly, and occasionally there are synchronized burs
events~Figs. 3 and 5!. However, intermediate levels of Ca21

concentrations around 1 mM have a dramatic effe
the network’s activity turns into almost periodic and rap
(;2 sec) synchronized bursting~see Fig. 5!, in agreement
with the observations of Maedaet al. @9#.

C. Long-term behavior

The novelty of our system is the ability to perform lon
term recordings~dozens of hours!. In Fig. 6 we show the
raster plot of the network dynamics at 1 min and 60 min a
the 1 mM Ca21 was added. After 1 min, the network show
the almost periodic and rapid (;2 sec) synchronized burs
ing as described before. However, after 60 min the netw
activity becomes aperiodic synchronized bursting. To ens
that the observed change in the activity was not due to
deterioration of the network, we continued recording for 1
after this data was collected and did not notice any sign
cant change in the activity.

Next we studied the transition between periodic and a
riodic network activities. It is natural to use time-depende
Fourier transform methods to analyze the long-term netw
activity. Our method involves calculating the population t
tal activity at each time bin, then dividing this time sequen
into windows. Using the Welch method of power spectru
estimation@20#, we calculate the power spectrum of ea
window. The result is a time sequence of power spectr
estimations. In Fig. 7 we show the development in time
01192
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the power spectral density~PSD! of the network activity.
The PSD shows at the beginning two high peaks that co
spond to the first and second harmonics of the periodic
work activity. After about 15 min the PSD becomes flat, a

FIG. 4. The effect of Ca concentration on network activity:
raster plot with a 0.1 sec bin.~a! 0.5 mM Ca concentration.~b! 1
mM Ca concentration.~c! 2 mM Ca concentration. The networ
activity is aperiodic under 0.5 mM Ca and 2 mM Ca and periodic
1 mM Ca ~data are from a single preparation!.
0-4
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OBSERVATIONS AND MODELING OF SYNCHRONIZED . . . PHYSICAL REVIEW E64 011920
the periodic activity fades away. An interesting feature of
observed transition is that there is no change in the freque
of the periodic activity during this transition as is seen fro
the PSD~Fig. 7!.

FIG. 5. ISBI calculated from;15 h recording~0.5 mM Ca
concentration!.

FIG. 6. Network dynamics under 1 mM Ca21 concentration.~a!
1 min after the 1 mM Ca was added.~b! 60 min after the 1 mM Ca
was added. At the early time the network shows the almost peri
and rapid (;2 sec) synchronized bursting. However, after 60 m
the network activity become aperiodic synchronized bursting. Ty
cally there were 1–6 spikes per neuron for each synchronized e
01192
e
cy

IV. FEEDBACK REGULATED INTEGRATE
AND FIRE MODEL

A. Beyond the integrate and fire model

As our starting point in modeling we used the wide
studied integrate and fire model. This model captures
key elements of neuronal activity: passive integration of s
aptic inputs in the subthreshold domain and generation o
action potential once the threshold has been exceeded~for a
review of the integrate and fire models see@14,21,16,22# for
a discussion in synchronization of nonlinear oscillators!. In
the model, each neuron is represented by a leaky capa
that integrates inputs from synaptic connections and exte
stimuli. The time dependence of the capacitor voltage is
scribed by the following equation:

C
dVi

dt
52

Vi

R
1(

j
W̄j i d~ t2tk

j !1I ext , ~1!

whereVi is the potential of thei th neuron.C andR are the
capacitance and resistance of the neuron.W̄ji are the synap-

tic efficacy between thej th andi th neuron.tk
j is thekth spike

of the j th neuron.I ext is the external current that feeds in
the neuron if it is externally stimulated. Since we are int
ested in spontaneous activity we setI ext50.

The synaptic coupling of the network is taken to be all
all, since our recoding array corresponds to one activity u
The synaptic efficacies are randomly selected from a unifo
distribution@0,Wmax# and eachi th neuron is either excitatory
~i.e., W̄ji .0 for all j ) or inhibitory ~i.e., W̄ji ,0 for all j ).
We choose 10% of the cells to be inhibitory.

Each neuron integrates the synaptic input, and once
potentialVi reaches a threshold levelVth , an action potential
is triggered and the charge that has accumulated on the
pacitor is shunted to zero. Following the action potential,
neuron enters a refractory period fort re f time units. During
the refractory period the capacitance is zero and the pote
is Vi[0. After t re f the neuron becomes active again.

The above picture is problematic when spontaneous ac
ity is considered. If we start with all the cells’ potential b

ic

i-
nt.

FIG. 7. Power spectral density vs time of network activity und
1 mM Ca concentration. The two high peaks in the PSD corresp
to the first and the second harmonics of the activity period. Af
;15 min the high periodic activity fades away.
0-5
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SEGEV, SHAPIRA, BENVENISTE, AND BEN-JACOB PHYSICAL REVIEW E64 011920
low threshold level, we have no activity. In reality, there a
internal mechanisms of spike generation below thresh
level. Two biophysiological processes contribute to t
mechanism:~1! the random opening of ionic channels c
induce an ‘‘avalanche’’ of channel openings and finally
spontaneous spike~see@14#, Chap. 8 for discussion! and~2!
the random release of neurotransmitter vesicles in the
apse can induce random excitatory postsynaptic poten
~EPSP’s! which are integrated from several sources to g
erate spontaneous spikes~see@14#, Chap. 4 for discussion!.

Here we represent these mechanisms in the model by
signing finite probability of firing below threshold level. Th
firing probability per unit timer is chosen to depend expo
nentially on the voltage

r 5Ve2(Vi2Vth)2/Te f f, ~2!

whereV is the attempt frequency andTe f f is the effective
energy barrier.

Simulations of the above specified integrate and
model produce synchronized activity as is shown in F
8~a!, i.e, aperiodic synchronized activity. However, the IS
histogram@Fig. 8~b!# differs from the observed one. Whil
the simulated distribution of ISBI is finite at zero, the me
sured one has a cutoff~absolute refractoriness!. This model
has to be refined. There are two additional known featu
that are not included in the model at this stage:~1! the dy-
namic threshold and~2! activity-dependent synaptic conne
tions. Next we test the effect of inclusion on each of the
features.

B. The effect of dynamical threshold

First we test the effect of inclusion of the dynamic
threshold on the model. This mechanism could be though
as representing the overall effect on the cell threshold
duced by the activation and inactivation of the ionic chann
~see@13,15,14# for discussions on similar mechanisms!. In
our model the cell’s threshold depends on the number
available closed channels. Once a spike is triggered,
closed channels open and generate the spike. During
spike, a fraction of the open channels turn inactive while
rest of the open channels return to the closed state. The c
nels in the inactive state are not opened by the spike
therefore increase the threshold. Specifically, letVth be the
cell’s threshold. Then

Vth5
1

nc1n0
, ~3!

wherenc is the number of the closed channels andn0 is a
constant. Following a spike, the number of closed channe
reduced as follows:

nc→~12a!nc . ~4!

Thus the number of inactive channels becomes

ni→ni1anc , ~5!
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where 0,a,1 is the fraction of channels that turn inactiv
Channels in the inactive state have a finite closing proba
ity per unit time. Thus,

dnc

dt
5

ni

t th
~6!

and

dni

dt
52

ni

t th
, ~7!

wheret th is the refractory time constant.
The effect of inclusion of the dynamic threshold is show

in Fig. 9~a!. Clearly, the resulting dynamics is in good agre
ment with the observed experimental data. The neurons
randomly, and occasionally there are synchronized fir
events. Furthermore, the ISBI histogram also agrees with
experimental one as is shown in Fig. 9~b!.

FIG. 8. Simulation of the integrate and fire model.~a! A raster
plot of 20 out of 100 cells in the simulation. The neurons fi
randomly and from time to time there is a synchronized bursti
~b! histogram of ISBI for the basic integrate and fire model.RC
510 msec,Wmax50.36.
0-6
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OBSERVATIONS AND MODELING OF SYNCHRONIZED . . . PHYSICAL REVIEW E64 011920
In order to simulate the effect of Ca concentration
vary Wmax. In Figs. 10~a!, 10~b!, and 10~c! we show raster
plots of network activity forWmax50.18, 0.23, and 0.17
respectively. At theWmax50.18 and 0.17 the network activ
ity is aperiodic synchronized bursting as with 0.5 and 2 m
Ca concentrations. When we increaseWmax to 0.23, the ac-
tivity becomes fast periodic synchronized bursting as in
case of 1 mM Ca concentrations. Thus, the model can c
ture the different activity patterns observed experimenta
~see Fig. 4!.

C. The effect of synapses dynamics

In this section we test the effect of dynamical synap
~see@23# and references therein for a similar mechanism t
leads to bursting!. There is a known fatigue effect on th
synapse strength. During activity the synapse releases
neurotransmitter and reuptakes it during the postspike
riod. Hence, the synaptic strength is reduced until the amo
of neurotransmitter in the synapse is fully recovered. In
model we assign to each synapse a single variable whic
the synaptic efficacyWi j . Each time the synapse passes
signal, its efficacy decreases as follows:

FIG. 9. ~a! A raster plot of simulation of network activity whe
the dynamic threshold is included in the model. The network ac
ity is more regular then before and theRC510 msec, t th

5100 msec,a50.4, Wmax50.1). ~b! A histogram of ISBI for the
model with the dynamic threshold.
01192
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Wi j →~12b!Wi j , ~8!

where 0,b,1 is a fatigue factor. Between events of ne
rotransmitter release the synapse efficacy increases con
ously

FIG. 10. The fit of the model with a dynamical threshold to t
different Ca concentration experiment. In each simulation we
justed theWmax to fit the dynamical state as follows:~a! 0.5 mM
Ca, Wmax50.18. ~b! 1 mM Ca,Wmax50.23. ~c! 2 mM Ca,Wmax

50.19.
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dWi j

dt
52

Wi j 2W̄i j

tsynapse
, ~9!

whereW̄i j is the steady-state synaptic efficacy~which is de-
termined randomly as described before!. The constant

FIG. 11. The fit of the model with dynamical synapses to
different Ca concentration experiment. In each simulation we
justed theWmax to fit the dynamical state as follows:~a! 0.5 mM
Ca, Wmax50.275; ~b! 1 mM Ca,Wmax50.6; ~c! 2 mM Ca,Wmax

50.28.
01192
tsynapseis the efficacy-recovering time constant. The effe
of the dynamical synaptic strength is shown in Fig. 11. W
find a good agreement with the experimental observation

To capture the effect of calcium concentration, we ag
vary the level ofWmax. The results are as shown in Fig. 1
Again, by adjusting the single variableWmax we get the nor-
mal activity ~as in the 0.5 mM Ca21 and 2 mM Ca21 experi-
ments! and the rapid synchronized bursting~as in the 1 mM
Ca21 concentration experiments!. Furthermore, the ISBI his-
togram is with a good agreement with the experimental o
~Fig. 12!.

V. DISCUSSION AND CONCLUSIONS

We have used the multielectrode array technique to st
the spontaneous activity of cultured 2D neural networks. T
single neuron dynamics shows that each neuron has its
characteristic ISI histogram. On the network level, the m
dominant features are the synchronized bursting events
these events, each of the neurons generates at least one
and usually several spikes during a time window
;100 msec. The basic features of the network ISBI his
gram are similar to those of the single neurons but the t
scale is different. Once a synchronized event is triggered,
system enters an absolute refractory period during wh
there is no synchronized bursting.

In our measurements, we could not detect a particu
spatial organization in the activity during the synchroniz
bursting events. Note that observation of heart cell tis
culture showed particular spatial organization@24#. This
brings to mind that neuron culture might also exhibit su
activity. Yet, in our experimental system, the maximum d
lay of the axonal transport of an action potential from o
neuron to another is less then 1 msec as compared to
msec of the typical time scale of synapse transport. The
fore, the synaptic delay erases the spatial delay, and t
should be no effect of the spatial organization of activity.
unravel the spatial organization one should use electrode
rays with larger spacing.

The experimental observations enable us to develo

-

FIG. 12. Histogram of ISBI for the model with dynamic syn
apses (Wmax50.275).
0-8
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OBSERVATIONS AND MODELING OF SYNCHRONIZED . . . PHYSICAL REVIEW E64 011920
feedback-regulated integrate and fire model. In this mo
each neuron is represented by a capacitor that integrate
synaptic inputs and generates an action potential w
threshold is exceeded. The following two additional featu
are included: ~1! dynamic threshold and~2! activity-
dependent synaptic connections. Each of these features
retain most of the observed network activity, from aperio
activity in the presence of a growth medium to periodic a
tivity in the presence of 1 mM Ca concentration.

Under 1 mM Ca concentration, the network exhibits
transition between periodic and aperiodic activity. Shor
after 1 mM Ca21 is added, the network exhibits almost p
riodic synchronized bursting which fades away af
;20 min. This brings to mind the possibility that the ne
work is adapting to the new conditions. According to th
notion, each neuron adapts its synapses or threshold to m
tain a level of network electrical activity@25#. The possibility
u
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01192
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of network adaptation should be verified in experiments
very-long-term (;days) measurements of spontaneous
tivity. The transition between periodic to aperiodic activi
needs an additional explanation that we did not include
our model at this stage. We hope that additional experim
tal studies will reveal the relevant information.
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